Exercise 15

The displacement (in meters) of a particle moving in a straight line is given by the equation of motion $s=1 / t^{2}$, where t is measured in seconds. Find the velocity of the particle at times $t=a$, $t=1, t=2$, and $t=3$.

Solution

Determine the velocity first.

$$
\begin{aligned}
v(t) & =s^{\prime}(t) \\
& =\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{(t+h)^{2}}-\frac{1}{t^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{t^{2}}{t^{2}(t+h)^{2}}-\frac{(t+h)^{2}}{t^{2}(t+h)^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{t^{2}-(t+h)^{2}}{t^{2}(t+h)^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{t^{2}-(t+h)^{2}}{h t^{2}(t+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{t^{2}-\left(t^{2}+2 h t+h^{2}\right)}{h t^{2}(t+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-2 h t-h^{2}}{h t^{2}(t+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-2 t-h}{t^{2}(t+h)^{2}} \\
& =\frac{-2 t}{t^{2}\left(t^{2}\right)} \\
& =-\frac{2}{t^{3}}
\end{aligned}
$$

Therefore, the velocity at each of the times is

$$
\begin{aligned}
& v(a)=-\frac{2}{(a)^{3}}=-\frac{2}{a^{3}} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v(1)=-\frac{2}{(1)^{3}}=-2 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v(2)=-\frac{2}{(2)^{3}}=-\frac{1}{4} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v(3)=-\frac{2}{(3)^{3}}=-\frac{2}{27} \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{aligned}
$$

